Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Incorporating CuInS2 quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells

Identifieur interne : 000212 ( Chine/Analysis ); précédent : 000211; suivant : 000213

Incorporating CuInS2 quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells

Auteurs : RBID : Pascal:13-0183447

Descripteurs français

English descriptors

Abstract

This paper describes for the first time a feasible strategy to prepare efficient hybrid solar cells that combine ideal bulk-heterojunction architecture and wide spectral response in ternary photoactive layer. CuInS2 quantum dots (CuInS2-QDs) with different sizes were controllably synthesized by the solvothermal method; MEH-PPV-CulnS2 hybrids for harvesting photons in a broad spectral range up to 900 nm were prepared by blending CuInS2-QDs with poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV), in which CuInS2-QDs aggregate into continuous and highly condensed interpenetrating nanochannels with the presence of effective MEH-PPV/CuInS2 interface for the energy transfer from MEH-PPV to CuInS2-QDs. Solar cells were fabricated by using the MEH-PPV-CulnS2 hybrids as light-harvester and vertically aligned TiO2 nanorod array (TiO2-NA) as a straightforward electron transporter, producing MEH-PPV-CuInS2/TiO2-NA devices with a ternary photoactive layer, and a power conversion efficiency of 1.60% was achieved under AM1.5 illumination. Compared to MEH-PPV/TiO2-NA binary solar cells, MEH-PPV-CuInS2/TiO2-NA ternary devices exhibit a much larger photocurrent and thereby efficiency. It is demonstrated that, in the ternary solar cells, photocurrent generation correlates dominantly with the light absorption property of MEH-PPV-CuInS2 hybrids, while open-circuit voltage is still mainly determined by the energy difference between the conduction band edge of TiO2 nanorods and the highest occupied molecular orbital level of the polymer. Based on the morphology and band alignments in the ternary system, the contributions of CuInS2-QDs to device performance and the related charge generation and transport processes are described.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0183447

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Incorporating CuInS
<sub>2</sub>
quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells</title>
<author>
<name>WENJINYUE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>University of Science and Technology of China</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Biochemical Engineering, Anhui University of Polytechnic</s1>
<s2>Wuhu 241000</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhu 241000</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FANWU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHANGWENLIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZELIANGQU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QI CUI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HUIZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FENGGAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEISHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QIQUANQIAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Center for Advanced Photovoltaics, Department of Electrical Engineering and Computer Sciences, South Dakota State University</s1>
<s2>Brookings, SD 57007</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Brookings, SD 57007</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MINGTAI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0183447</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0183447 INIST</idno>
<idno type="RBID">Pascal:13-0183447</idno>
<idno type="wicri:Area/Main/Corpus">000D86</idno>
<idno type="wicri:Area/Main/Repository">000A84</idno>
<idno type="wicri:Area/Chine/Extraction">000212</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Comparative study</term>
<term>Conduction band</term>
<term>Conversion rate</term>
<term>Copper sulfide</term>
<term>Energy conversion</term>
<term>Energy transfer</term>
<term>Heterojunction</term>
<term>Hybrid circuit</term>
<term>Illumination</term>
<term>Indium sulfide</term>
<term>Interface energy</term>
<term>Light absorption</term>
<term>Molecular orbital</term>
<term>Morphology</term>
<term>Nanorod</term>
<term>Open circuit voltage</term>
<term>Performance evaluation</term>
<term>Phenylenevinylene derivative polymer</term>
<term>Photoelectric current</term>
<term>Polymer</term>
<term>Quantum dot</term>
<term>Solar cell</term>
<term>Solvothermal synthesis</term>
<term>Spectral response</term>
<term>Ternary compound</term>
<term>Titanium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Point quantique</term>
<term>Polymère</term>
<term>Cellule solaire</term>
<term>Hétérojonction</term>
<term>Réponse spectrale</term>
<term>Synthèse solvothermale</term>
<term>Energie interface</term>
<term>Transfert énergie</term>
<term>Nanobâtonnet</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Eclairement</term>
<term>Etude comparative</term>
<term>Courant photoélectrique</term>
<term>Evaluation performance</term>
<term>Absorption lumière</term>
<term>Circuit hybride</term>
<term>Tension circuit ouvert</term>
<term>Bande conduction</term>
<term>Orbitale moléculaire</term>
<term>Morphologie</term>
<term>Composé ternaire</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>Phénylènevinylène dérivé polymère</term>
<term>Oxyde de titane</term>
<term>CuInS2</term>
<term>TiO2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper describes for the first time a feasible strategy to prepare efficient hybrid solar cells that combine ideal bulk-heterojunction architecture and wide spectral response in ternary photoactive layer. CuInS
<sub>2</sub>
quantum dots (CuInS
<sub>2</sub>
-QDs) with different sizes were controllably synthesized by the solvothermal method; MEH-PPV-CulnS
<sub>2</sub>
hybrids for harvesting photons in a broad spectral range up to 900 nm were prepared by blending CuInS
<sub>2</sub>
-QDs with poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV), in which CuInS
<sub>2</sub>
-QDs aggregate into continuous and highly condensed interpenetrating nanochannels with the presence of effective MEH-PPV/CuInS
<sub>2</sub>
interface for the energy transfer from MEH-PPV to CuInS
<sub>2</sub>
-QDs. Solar cells were fabricated by using the MEH-PPV-CulnS
<sub>2</sub>
hybrids as light-harvester and vertically aligned TiO
<sub>2</sub>
nanorod array (TiO
<sub>2</sub>
-NA) as a straightforward electron transporter, producing MEH-PPV-CuInS
<sub>2</sub>
/TiO
<sub>2</sub>
-NA devices with a ternary photoactive layer, and a power conversion efficiency of 1.60% was achieved under AM1.5 illumination. Compared to MEH-PPV/TiO
<sub>2</sub>
-NA binary solar cells, MEH-PPV-CuInS
<sub>2</sub>
/TiO
<sub>2</sub>
-NA ternary devices exhibit a much larger photocurrent and thereby efficiency. It is demonstrated that, in the ternary solar cells, photocurrent generation correlates dominantly with the light absorption property of MEH-PPV-CuInS
<sub>2</sub>
hybrids, while open-circuit voltage is still mainly determined by the energy difference between the conduction band edge of TiO
<sub>2</sub>
nanorods and the highest occupied molecular orbital level of the polymer. Based on the morphology and band alignments in the ternary system, the contributions of CuInS
<sub>2</sub>
-QDs to device performance and the related charge generation and transport processes are described.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>114</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Incorporating CuInS
<sub>2</sub>
quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WENJINYUE</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FANWU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHANGWENLIU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZELIANGQU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>QI CUI</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HUIZHANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FENGGAO</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WEISHEN</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>QIQUANQIAO</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>MINGTAI WANG</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Plasma Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of Science and Technology of China</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Biochemical Engineering, Anhui University of Polytechnic</s1>
<s2>Wuhu 241000</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Center for Advanced Photovoltaics, Department of Electrical Engineering and Computer Sciences, South Dakota State University</s1>
<s2>Brookings, SD 57007</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>43-53</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000173375110070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>87 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0183447</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper describes for the first time a feasible strategy to prepare efficient hybrid solar cells that combine ideal bulk-heterojunction architecture and wide spectral response in ternary photoactive layer. CuInS
<sub>2</sub>
quantum dots (CuInS
<sub>2</sub>
-QDs) with different sizes were controllably synthesized by the solvothermal method; MEH-PPV-CulnS
<sub>2</sub>
hybrids for harvesting photons in a broad spectral range up to 900 nm were prepared by blending CuInS
<sub>2</sub>
-QDs with poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV), in which CuInS
<sub>2</sub>
-QDs aggregate into continuous and highly condensed interpenetrating nanochannels with the presence of effective MEH-PPV/CuInS
<sub>2</sub>
interface for the energy transfer from MEH-PPV to CuInS
<sub>2</sub>
-QDs. Solar cells were fabricated by using the MEH-PPV-CulnS
<sub>2</sub>
hybrids as light-harvester and vertically aligned TiO
<sub>2</sub>
nanorod array (TiO
<sub>2</sub>
-NA) as a straightforward electron transporter, producing MEH-PPV-CuInS
<sub>2</sub>
/TiO
<sub>2</sub>
-NA devices with a ternary photoactive layer, and a power conversion efficiency of 1.60% was achieved under AM1.5 illumination. Compared to MEH-PPV/TiO
<sub>2</sub>
-NA binary solar cells, MEH-PPV-CuInS
<sub>2</sub>
/TiO
<sub>2</sub>
-NA ternary devices exhibit a much larger photocurrent and thereby efficiency. It is demonstrated that, in the ternary solar cells, photocurrent generation correlates dominantly with the light absorption property of MEH-PPV-CuInS
<sub>2</sub>
hybrids, while open-circuit voltage is still mainly determined by the energy difference between the conduction band edge of TiO
<sub>2</sub>
nanorods and the highest occupied molecular orbital level of the polymer. Based on the morphology and band alignments in the ternary system, the contributions of CuInS
<sub>2</sub>
-QDs to device performance and the related charge generation and transport processes are described.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Réponse spectrale</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Spectral response</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Synthèse solvothermale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Solvothermal synthesis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Síntesis solvotermal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Energie interface</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Interface energy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Energía interfase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Transfert énergie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Energy transfer</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Transferencia energía</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Nanobâtonnet</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Nanorod</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Nanopalito</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Photoelectric current</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Corriente fotoeléctrica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Absorption lumière</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Light absorption</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Absorción luz</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Circuit hybride</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Hybrid circuit</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Circuito híbrido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Bande conduction</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Conduction band</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Banda conducción</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Orbitale moléculaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Molecular orbital</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Orbital molecular</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Phénylènevinylène dérivé polymère</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Phenylenevinylene derivative polymer</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Fenilenovinileno derivado polimero</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>CuInS2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>168</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000212 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000212 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0183447
   |texte=   Incorporating CuInS2 quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024